Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models

نویسندگان

  • Emil Eirola
  • Andrey Gritsenko
  • Anton Akusok
  • Kaj-Mikael Björk
  • Yoan Miché
  • Dusan Sovilj
  • Rui Nian
  • Bo He
  • Amaury Lendasse
چکیده

This paper presents an extension of the well-known Extreme Learning Machines (ELMs). The main goal is to provide probabilities as outputs for Multiclass Classification problems. Such information is more useful in practice than traditional crisp classification outputs. In summary, Gaussian Mixture Models are used as post-processing of ELMs. In that context, the proposed global methodology is keeping the advantages of ELMs (low computational time and state of the art performances) and the ability of Gaussian Mixture Models to deal with probabilities. The methodology is tested on 3 toy examples and 3 real datasets. As a result, the global performances of ELMs are slightly improved and the probability outputs are seen to be accurate and useful in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Support Vector Machines Based on Density Estimation with Gaussian Mixture for Multiclass Problems

In this paper, we introduce new Fuzzy Support Vector Machines (FSVMs) for a multiclass classification. The suggested Fuzzy Support Vector Machines include the data distribution with the density estimated in a set of functions defined as Gaussian mixture. The proposed method gives more appropriate boundaries than the classical FSVM method. We demonstrate some examples which confirm our approach.

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Kernel based Extreme Learning Machines for Image Classification

This paper investigates possibilities for application of Kernel based Extreme Learning Machines (K-ELM) to the problem of multiclass image classification. It is combined with Local Binary Pattern (LBP) image descriptor, to reach highly accurate results. LBP is widely used global image descriptor characterized by compactness and robustness to illumination and resolution changes. Classification i...

متن کامل

Gaussian Mixture Models for multiclass problems with performance constraints

This paper proposes a method using labelled data to learn a decision rule for multiclass problems with class-selective rejection and performance constraints. The method is based on class-conditional density estimations obtained by using the Gaussian Mixture Models (GMM). The rule is thus determined by plugging these estimations in the statistical hypothesis framework and solving an optimization...

متن کامل

Optimal Bayesian Classifier for Land Cover Classification Using Landsat TM Data

An optimal Bayesian classifier using mixture distribution class models with joint learning of loss and prior probability functions is proposed for automatic land cover classification. The probability distribution for each land cover class is more realistically modeled as a population of Gaussian mixture densities. A novel two-stage learning algorithm is proposed to learn the Gaussian mixture mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015